

Foundations of Computing

Finite State Machine (FSM)

Dr Robert Blair

r.blair@uea.ac.uk

Foundations of Computing

Introduction to basic analogue electronics

Outline

- 1. Example of FSM
- Finite state (set)
- 3. State diagram
- 4. Basic control program
- 5. Code efficiency
- 6. Recap

Learning outcomes

- You will be able to define a Finite State Machine
- You can describe the characteristics of an FSM
- You will be aware of two ways in which an FSM can be represented
- You can create an FSM using an Arduino
- You can understand the basic program for an FSM using an Arduino
- You can improve the efficiency of the basic program

- A computing machine
- Fixed set of possible states –
 Finite states
- Accepts or does not accept an input
- Fixed set of possible inputs
- Fixed set of possible outputs
- Limited memory availability
 - Finite
- Output not always necessary

Not a physical machine

- An abstract creation
 - model simple computation and decision making

- 'Machine' which takes an input
- Accepts input
- Changes state or
- Remains in same state

Current state

New state =

+

Input value

- Consider a ball point pen
- Click the pen button
- Change state
- Click button again
- Change state
- Same input
- State depends upon previous state

History of states can be summed by current state

State Transition Diagrams

State Transition Diagrams

aka – accepting state

State Transition Tables

Consider pen state Before input After input

INPUT CURRENT STATE NEXT STATE

BUTTON PRESSED NIB RETRACTED NIB EXTENDED

BUTTON PRESSED NIB EXTENDED NIB RETRACTED

State Transition Tables

State HallSition lables

Regular expression state transition table

INPUT	CURRENT STATE	NEXT STATE
а	0	1
b	0	2
а	1	2
b	1	1
а	2	2
b	2	2

a, b

Summary

An FSM is an abstract computing machine that has

- a fixed set of possibl states
- a set of inputs that change a state
- a set of possible outputs

Current state

Characteristics of FSM: next state = +

Input value

Summary

Representations

a, b

Regular expression state transition table

INPUT	CURRENT STATE	NEXT STATE
а	0	1
b	0	2
а	1	2
b	1	1
а	2	2
b	2	2

Example – Arduino

